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Abstract. Brunn-Minkowski theorem says that vol
(
(1−λ)K+λL

)1/n
,

for K, L convex bodies, is a concave function in λ, and assuming a com-
mon hyperplane projection of K and L, it was proved that the volume
itself is concave. In this paper we study refinements of Brunn-Minkowski
inequality, in the sense of ‘enhancing’ the exponent, either when a com-
mon projection onto an (n−k)-plane is assumed or for particular families
of sets. In the first case, we show that the expected result of concav-
ity for the k-th root of the volume is not true, although other Brunn-
Minkowski type inequalities can be obtained under the (n−k)-projection
hypothesis. In the second case, we show that for p-tangential bodies,
the exponent in Brunn-Minkowski inequality can be replaced by 1/p.

1. Introduction

Let Kn be the set of all convex bodies, i.e., compact convex sets, in the
n-dimensional Euclidean space Rn, and we denote by ei the i-th canonical
unit vector. The subset of Kn consisting of all convex bodies with non-empty
interior is denoted by Kn

0 , and we write Bn for the n-dimensional Euclidean
unit ball. The n-dimensional volume of a set M ( Rn, i.e., its n-dimensional
Lebesgue measure, is denoted by vol(M) (or voln(M) if the distinction of
the dimension is useful) and, in particular, we write κn = vol(Bn), which
takes the value

(1.1) κn =
πn/2

Γ
(

n
2 + 1

) ,
where Γ denotes the gamma function. With intM and lin M we represent
its interior and linear hull, respectively. Finally, the set of all k-dimensional
(linear) planes of Rn is denoted by Ln

k , and for H ∈ Ln
k , K ∈ Kn, the

orthogonal projection of K onto H is denoted by K|H and with H⊥ ∈ Ln
n−k

we represent the orthogonal complement of H.
Relating the volume with the Minkowski (vectorial) addition of convex

bodies, one is led to the famous Brunn-Minkowski inequality. One form of
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it states that if K, L ∈ Kn and 0 ≤ λ ≤ 1, then

(1.2) vol
(
(1− λ)K + λL

)1/n ≥ (1− λ)vol(K)1/n + λvol(L)1/n,

i.e., the n-th root of the volume is a concave function. Equality for some
λ ∈ (0, 1) holds if and only if K and L either lie in parallel hyperplanes or
are homothetic.

Brunn-Minkowski inequality is one of the most powerful results in Convex
Geometry and beyond: for instance, its equivalent analytic version (Prékopa-
Leindler inequality, see e.g. [8, Theorem 8.14]) and the fact that the con-
vexity/compactness assumption can be ‘weakened’ to consider just Lebesgue
measurable sets (see [12]), have allowed it to move in much wider fields. It
implies very important inequalities as the isoperimetric and Urysohn in-
equalities (see e.g. [19, p. 318]) or even the Aleksandrov-Fenchel inequality
(see e.g. [19, s. 6.3]), and it has been the starting point for new developments
like the so called Lp-Brunn-Minkowski theory (see e.g. [13, 14]), a Brunn-
Minkowski result for integer lattices (see [6]), or a reverse Brunn-Minkowski
inequality (see e.g. [15]), among many others. It would not be possible
to collect here all references regarding versions, applications and/or gener-
alizations on Brunn-Minkowski inequality. So, for extensive and beautiful
surveys on them we refer to [2, 5].

In [3, s. 50], linear refinements of the Brunn-Minkowski inequality are
obtained for convex bodies having a common/equal volume hyperplane pro-
jection (see also [16] for compact sets and more recently [7, ss. 1.2.4]).

Theorem A ([3, 7]). Let K, L ∈ Kn be convex bodies such that there exists
a hyperplane H ∈ Ln

n−1 with K|H = L|H. Then, for all λ ∈ [0, 1],

(1.3) vol
(
(1− λ)K + λL

)
≥ (1− λ)vol(K) + λvol(L).

This is, the volume itself is a concave function.

Theorem B ([3, 7, 16]). Let K, L ∈ Kn be convex bodies such that there
exists a hyperplane H ∈ Ln

n−1 with voln−1(K|H) = voln−1(L|H). Then, for
all λ ∈ [0, 1],

vol
(
(1− λ)K + λL

)
≥ (1− λ)vol(K) + λvol(L).

The volume of the sum of two convex bodies K, λE ∈ Kn, λ ≥ 0, has also
a precise expression as a polynomial, namely

(1.4) vol(K + λE) =
n∑

i=0

(
n

i

)
Wi(K;E)λi,

known as the (relative) Steiner formula of K. The coefficients Wi(K;E) are
the relative quermassintegrals of K, and they are a special case of the more
general defined mixed volumes for which we refer to [19, s. 5.1]. In partic-
ular, we have W0(K;E) = vol(K), Wn(K;E) = vol(E) and Wi(K;E) =
Wn−i(E;K). If E = Bn, (1.4) becomes the classical Steiner formula [21],
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and Wi(K;Bn), for short denoted by Wi(K), is the classical i-th quermass-
integral of K. If the dimension dim K = 2, then vol(K) = A(K) is the usual
area of K and 2W1(K) = p(K) is its perimeter.

Brunn-Minkowski inequality has a more general version for quermassin-
tegrals: if K, L, E ∈ Kn and 0 ≤ λ ≤ 1, then, for all i = 0, . . . , n− 2,
(1.5)
Wi

(
(1− λ)K + λL;E

)1/(n−i) ≥ (1− λ)Wi(K;E)1/(n−i) + λWi(L;E)1/(n−i),

whereas Wn−1

(
(1−λ)K + λL;E

)
= (1−λ)Wn−1(K;E) + λWn−1(L;E); in

fact, there exist the most general version of Brunn-Minkowski inequality for
mixed volumes (see [19, Theorem 6.4.3]).

Regarding Theorem A, Schneider proved in a very elegant way that even
the most general Brunn-Minkowski inequality for mixed volumes (and thus,
in particular, the Brunn-Minkowski inequality for quermassintegrals (1.5))
admits an improved version of this type, unifying different results in the
literature about this topic ([18], see also [19, s. 6.7]): if K, L ∈ Kn are convex
bodies such that there exists a hyperplane H ∈ Ln

n−1 with K|H = L|H,
then any mixed volume (quermassintegrals, volume) itself of the convex
combination (1− λ)K + λL is a concave function in λ ∈ [0, 1].

At this point it is a natural question whether an analogous result to
Theorem A, but with the suitable exponent, can be obtained if a common
projection onto an (n−k)-dimensional plane is assumed. Thus, the following
property would be a natural expected solution:

(1.6)

Let k ∈ {1, . . . , n} and let K, L ∈ Kn be convex bodies such that
there exists H ∈ Ln

n−k with K|H = L|H. Then for all λ ∈ [0, 1]
it holds

vol
(
(1− λ)K + λL

)1/k ≥ (1− λ)vol(K)1/k + λvol(L)1/k.

In this paper we show that this statement is not true. More precisely, we
prove the following theorem:

Theorem 1.1. For every n ≥ 3, there exist convex bodies K, L ∈ Kn, with a
common (n− 2)-dimensional projection K|H = L|H, H ∈ Ln

n−2, such that,
for all λ ∈ (0, 1),

(1.7) vol
(
(1− λ)K + λL

)1/2
< (1− λ)vol(K)1/2 + λvol(L)1/2.

Therefore, either additional assumptions should be imposed in order to
get (1.6) or, under that precise hypothesis, a different inequality can be
obtained. In this sense, we get the following results.

Proposition 1.1. Let k ∈ {1, . . . , n} and let K, L ∈ Kn be convex bodies
such that there exists H ∈ Ln

n−k with K|H = L|H. Then, for all λ ∈ [0, 1],

(1.8) vol
(
(1− λ)K + λL

)
≥ (1− λ)kvol(K) + λkvol(L).

As in the case of Theorems A and B, the same inequality (1.8) can be
obtained when a condition on the volume of the projection is assumed.
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Proposition 1.2. Let k ∈ {1, . . . , n} and let K, L ∈ Kn be convex bodies
such that there exists H ∈ Ln

n−k with voln−k(K|H) = voln−k(L|H). Then,
for all λ ∈ [0, 1],

vol
(
(1− λ)K + λL

)
≥ (1− λ)kvol(K) + λkvol(L).

An analogous result to the above one can be obtained if we replace the
projection condition by a suitable section hypothesis (see Proposition 3.1).

We observe that the above relation (1.8) has inequality (1.3) as a partic-
ular case; however, Brunn-Minkowski inequality cannot be obtained from it
(see Remark 3.1). Next theorem provides an extension of both inequalities
(1.8) and (1.2) (see Remark 3.2). In order to state the result, we need the
following additional notation, which will be used throughout all the paper:
given K ∈ Kn and H ∈ Ln

n−k, we will write, for any u ∈ K|H,

(1.9) K(u) =
{
x ∈ Rk : (x, u) ∈ K

}
.

Theorem 1.2. Let k ∈ {1, . . . , n} and let K, L ∈ Kn be convex bodies such
that there exists H ∈ Ln

n−k with K|H = L|H = U . Then, for all λ ∈ [0, 1],

vol
(
(1− λ)K + λL

)1/k ≥ (1− λ)
∫

U

(
volk(K(u))

voln−k(U)k−1

)1/k

du

+λ

∫
U

(
volk(L(u))

voln−k(U)k−1

)1/k

du.

(1.10)

In Section 2 we give the counterexample to statement (1.6) by showing
Theorem 1.1, whereas Section 3 is devoted to prove Propositions 1.1, 1.2
and Theorem 1.2. There, we also show some related results for (relative)
quermassintegrals (Propositions 2.1 and 3.2).

Next, we wonder whether refinements of Brunn-Minkowski inequality of
type (1.6) can be obtained for particular families of sets or under additional
assumptions. In Section 4 we deal with this question, and show, among oth-
ers, that it has a positive answer for the family of the so called p-tangential
bodies (see Section 4 for the definition). In this case, also a refinement of
the more general Brunn-Minkowski inequality for quermassintegrals (1.5)
can be achieved.

Theorem 1.3. Let K be a p-tangential body of E ∈ Kn
0 , 1 ≤ p ≤ n − 1.

Then, for all λ ∈ [0, 1],

vol
(
(1− λ)K + λE

)1/p ≥ (1− λ)vol(K)1/p + λvol(E)1/p,

and equality holds if and only if K = E. Moreover,

Wi

(
(1−λ)K +λE;K

)1/(p−i) ≥ (1−λ)Wi(K;K)1/(p−i) +λWi(E;K)1/(p−i),

i = 0, . . . , p− 1, and equality holds for some fixed i, if and only if K is also
an i-tangential body of E.
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2. The counterexample

We start by showing a preliminary result which will be needed in the
proof of Theorem 1.1.

Lemma 2.1. The sequence
(
κnκn−2/κ2

n−1

)
n≥2

is strictly increasing and
limn→∞ κnκn−2/κ2

n−1 = 1.

Proof. On the one hand, we consider the real functions fi : (0,∞) −→ R,
i = 1, 2, given by f1(x) = (x−1/2) log x and f2(x) = θ/(12x) for (any) fixed
0 < θ < 1 which will be suitably chosen later on. From the concavity of
their first derivatives we get

2f ′i

(
x +

1
2

)
− f ′i(x)− f ′i(x + 1) = 2

[
f ′i

(
x +

1
2

)
− f ′i(x) + f ′i(x + 1)

2

]
> 0,

and hence, the real functions hi : (0,∞) −→ R, i = 1, 2, given by

hi(x) = 2fi

(
x +

1
2

)
− fi(x)− fi(x + 1)

are strictly increasing. Therefore, eh1(x)+h2(x) is also strictly increasing.
On the other hand, Stirling’s formula for the gamma function Γ(x) (see

e.g. [1, p.24]) allows us to write

Γ
(
x + 1

2

)2
Γ(x)Γ(x + 1)

= eh1(x)+h2(x)

for a suitable θ ∈ (0, 1) (see [1, (3.9)]). Thus, all together, and using (1.1),
we can conclude that

κnκn−2

κ2
n−1

=
Γ
(

n−1
2 + 1

)2
Γ
(

n
2 + 1

)
Γ
(

n−2
2 + 1

) = eh1(n
2 )+h2(n

2 )

is strictly increasing in n. The last assertion comes from the fact that
limn→∞(κn−k/κn)/(κn−1/κn)k = 1 for all k ≥ 0 (see [10, Lemma 3.1]); in
particular, for k = 2 we get the required result. �

In order to prove Theorem 1.1, we explicitly construct the convex bodies
providing a counterexample for statement (1.6).

Proof of Theorem 1.1. Let g(λ) = vol
(
(1− λ)K + λL

)
and f(λ) = g(λ)1/2.

On the one hand, we observe that the reverse inequality to (1.7), namely,

vol
(
(1− λ)K + λL

)1/2 ≥ (1− λ)vol(K)1/2 + λvol(L)1/2

for convex bodies K, L ∈ Kn having a common (n− 2)-dimensional projec-
tion, K|H = L|H, holds if and only if f(λ) is a concave function on [0, 1].
Indeed, since K|H = L|H, then (1−λ1)K|H+λ1L|H = (1−λ2)K|H+λ2L|H
for any λ1, λ2 ∈ [0, 1], and thus the above inequality can be applied to the
convex bodies (1−λ1)K+λ1L, (1−λ2)K+λ2L in order to get the inequality
f
(
(1 − t)λ1 + tλ2

)
≥ (1 − t)f(λ1) + tf(λ2). Conversely, if f is a concave
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function on [0, 1] then we have, in particular, that f(t) ≥ (1− t)f(0)+ tf(1),
which gives the required inequality for the volume.

On the other hand, f(λ) is concave if and only if

f ′′(λ) =
1
2
g(λ)−3/2

[
g(λ)g′′(λ)− 1

2
g′(λ)2

]
≤ 0,

i.e., if and only if F (λ) = g(λ)g′′(λ) − (1/2)g′(λ)2 ≤ 0. Therefore, if we
find two convex bodies K, L ∈ Kn, having a common (n − 2)-dimensional
projection, and verifying that F (λ) > 0 for all λ ∈ [0, 1], then inequality
(1.7) will hold for all λ ∈ (0, 1).

Let L = Bn and K = M + Bn, with M ∈ K2
0 lying in a 2-dimensional

linear plane. On the one hand, it is clear that if H = (linM)⊥ ∈ Ln
n−2 is

the orthogonal complement of linM , then K|H = Bn|H.
On the other hand, Steiner formula (1.4) allows us to write

g(λ) = vol
(
(1− λ)(M + Bn) + λBn

)
= vol

(
(1− λ)M + Bn

)
=

n∑
i=0

(
n

i

)
Wi(M)(1− λ)n−i,

and since dim M = 2, the quermassintegrals Wi(M) take the values

Wi(M) = 0, i = 0, . . . , n− 3,

Wn−2(M) =
2κn−2

n(n− 1)
A(M), Wn−1(M) =

κn−1

2n
p(M)

(see e.g. [17, Property 3.1]), and therefore,

g(λ) =
n(n− 1)

2
Wn−2(M)(1− λ)2 + nWn−1(M)(1− λ) + κn

= κn−2A(M)(1− λ)2 +
κn−1

2
p(M)(1− λ) + κn.

Thus, it is an easy computation to check that

F (λ) = g(λ)g′′(λ)− g′(λ)2

2
=

1
8

[
16κnκn−2A(M)− κ2

n−1p(M)2
]
,

and does not depend on λ. So, F (λ) > 0 if and only if there exists a planar
convex body M verifying that

(2.1) p(M)2 < 16
κnκn−2

κ2
n−1

A(M)

for all n ≥ 3. We observe that κnκn−2/κ2
n−1 is strictly increasing for n ≥ 2

(see Lemma 2.1), and hence, since n ≥ 3, we have

16
κnκn−2

κ2
n−1

> 16
κ2κ0

κ2
1

= 4π =
p(B2)2

A(B2)
.

Thus, the planar unit ball B2 satisfies (2.1) for any value of the dimension.
It finishes the proof. In fact, many planar convex bodies verify (2.1). �
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An analogous argument also shows that the corresponding expected re-
finement for the Brunn-Minkowski inequality for quermassintegrals (1.5)
(when E = Bn) is not possible:

Proposition 2.1. Let i ∈ N be fixed. Then there exists n0 ≥ i + 3 such
that, for all n ≥ n0, there are convex bodies K, L ∈ Kn, with a common
(n− 2)-dimensional projection, verifying that for all λ ∈ (0, 1),

(2.2) Wi

(
(1− λ)K + λL

)1/2
< (1− λ)Wi(K)1/2 + λWi(L)1/2.

Proof. Let g(λ) = Wi

(
(1− λ)K + λL

)
and f(λ) = g(λ)1/2. Arguing in the

same way as in the proof of Theorem 1.1, we conclude that if we find two
convex bodies K, L ∈ Kn, having a common (n− 2)-dimensional projection,
n large enough, and verifying that F (λ) = g(λ)g′′(λ) − (1/2)g′(λ)2 > 0 for
all λ ∈ [0, 1], then inequality (2.2) will hold for all λ ∈ (0, 1).

Again, let L = Bn and K = M + Bn with dim M = 2, for which the
projection condition is fulfilled. Similar computations as before show that
F (λ) > 0 if and only if there exists a planar convex body M verifying that

(2.3) p(M)2 < 16
n(n− i− 1)

(n− 1)(n− i)
κnκn−2

κ2
n−1

A(M).

It is easy to check that the function n(n− i− 1)/
(
(n− 1)(n− i)

)
is strictly

increasing in n if n ≥ (i + 1)/2 (in particular, for n ≥ i + 3) for fixed i, and
has limit 1 when n goes to infinity. Since κnκn−2/κ2

n−1 is also increasing in
the dimension and tends to 1 when n → ∞ (see Lemma 2.1), the product
of both functions is increasing and we get

lim
n→∞

16
n(n− i− 1)

(n− 1)(n− i)
κnκn−2

κ2
n−1

= 16 > 4π =
p(B2)2

A(B2)
.

Thus, if n0 ∈ N is the first value of the dimension such that the planar
unit ball B2 satisfies (2.3) (the above condition for the limit ensures that n0

always exists), then the monotonicity shows that for all n ≥ n0, inequality
(2.2) holds for K = B2 + Bn and L = Bn. �

We observe, for instance, that in the case i = 1, the value of the dimension
from which inequality (2.2) holds is n0 = 5.

In [7, Corollary 1.2.1] a similar result to Theorem B was proved but
involving sections instead projections: if

(2.4) max
x∈H⊥

voln−1

(
K ∩ (H + x)

)
= max

x∈H⊥
voln−1

(
L ∩ (H + x)

)
,

for K, L ∈ Kn and some hyperplane H ∈ Ln
n−1, then

(2.5) vol
(

1
2
(K + L)

)
≥ 1

2
vol(K) +

1
2
vol(L).

The same construction can be made in order to show that an analogous result
for (n − k)-dimensional sections will be not true: indeed, since the convex
bodies K = B2 + Bn and L = Bn are symmetric with respect to the origin,
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for any (n− k)-plane H, the section K ∩ (H + x), x ∈ H⊥, with maximum
(n−k)-dimensional volume is the one through the origin, i.e., K ∩H, which
coincides with the projection K|H (and analogously for L = Bn). Therefore,
choosing H as in the proof of Theorem 1.1, condition (2.4) is fulfilled, but
we get that vol

(
(1/2)(K + L)

)1/2
< (1/2)vol(K)1/2 + (1/2)vol(L)1/2.

3. Refinements of Brunn-Minkowski inequality involving
projections

Next we deal with Propositions 1.1 and 1.2. We point out that the proofs
of these results follow the idea of the proofs of Theorems A and B in [7].

Proof of Proposition 1.1. Without loss of generality we may assume that H
is the (n − k)-plane H =

{
(x1, . . . , xn) ∈ Rn : x1 = · · · = xk = 0

}
, and for

the sake of brevity we write, on the one hand,

U = K|H = L|H and Mλ = (1− λ)K + λL.

Thus, Mλ|H = (1− λ)(K|H) + λ(L|H) = U , for all λ ∈ [0, 1]. On the other
hand, it is clear that for all u ∈ U and any x ∈ K(u), y ∈ L(u) (cf. (1.9)),
it holds (

(1− λ)x + λy, u
)

= (1− λ)(x, u) + λ(y, u) ∈ Mλ,

and therefore, (1−λ)K(u)+λL(u) ⊂ Mλ(u). Thus, using Fubini’s theorem
and Brunn-Minkowski inequality (1.2), we get

vol
(
(1− λ)K + λL

)
= vol(Mλ) =

∫
U

volk
(
Mλ(u)

)
du

≥
∫

U
volk

(
(1− λ)K(u) + λL(u)

)
du

≥
∫

U

(
(1− λ)volk

(
K(u)

)1/k+ λvolk
(
L(u)

)1/k
)k

du

≥
∫

U

(
(1− λ)kvolk

(
K(u)

)
+λkvolk(L(u))

)
du

= (1− λ)kvol(K) + λkvol(L). �

As in the case of Theorem B, the identity assumption on projections can
be weakened to an equality between suitable (n− k)-dimensional volumes.

Proof of Proposition 1.2. Applying Schwarz symmetrization to the convex
bodies K, L and (1−λ)K +λL, with respect to the (n− k)-plane H, yields
new convex bodies K ′ = σHK, L′ = σHL and σH

(
(1− λ)K + λL

)
verifying

(1− λ)K ′ + λL′ ⊂ σH

(
(1− λ)K + λL

)
(see [11, ch. IV]), and since Schwarz symmetrization preserves the volume,
it suffices to prove that

vol
(
(1− λ)K ′ + λL′

)
≥ (1− λ)kvol(K ′) + λkvol(L′).
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Next, we notice that K|H = K ′ ∩H and, moreover,

voln−k

(
K ′ ∩H

)
= max

t∈H⊥
voln−k

(
K ′ ∩ (t + H)

)
,

and analogously for the convex body L. Then, applying again Schwarz
symmetrization to the sets K ′, L′, but now with respect to H⊥, we get new
convex bodies σH⊥K ′, σH⊥L′ verifying that(

σH⊥K ′) |H =
(

voln−k(K|H)
κn−k

)1/(n−k)

Bn−k,

(
σH⊥L′

)
|H =

(
voln−k(L|H)

κn−k

)1/(n−k)

Bn−k,

and since voln−k(K|H) = voln−k(L|H), we obtain that(
σH⊥K ′) |H =

(
σH⊥L′

)
|H.

Thus, we can apply Proposition 1.1 to the convex bodies σH⊥K ′, σH⊥L′

which, together with the facts that the volume is preserved and the inclusion
(1− λ)σH⊥K ′ + λ σH⊥L′ ⊂ σH⊥

(
(1− λ)K ′ + λL′

)
holds, yields

vol
(
(1− λ)K ′ + λL′

)
= vol

(
σH⊥

(
(1− λ)K ′ + λL′

))
≥ vol

(
(1− λ)σH⊥K ′ + λ σH⊥L′

)
≥ (1− λ)kvol

(
σH⊥K ′)+ λkvol

(
σH⊥L′

)
= (1− λ)kvol(K ′) + λkvol(L′). �

Remark 3.1. We observe that Brunn-Minkowski inequality (1.2) implies
that vol

(
(1− λ)K + λL

)
≥ (1− λ)nvol(K) + λnvol(L). Therefore inequality

(1.8) generalizes the above one for k = n and (1.3) when k = 1.

Inequality (1.8) can be also obtained if we replace the projection volume
property voln−k(K|H) = voln−k(L|H) by a section volume condition:

Proposition 3.1. Let k ∈ {1, . . . , n} and let K, L ∈ Kn be convex bodies
such that there exists H ∈ Ln

n−k with

max
x∈H⊥

voln−k

(
K ∩ (x + H)

)
= max

x∈H⊥
voln−k

(
L ∩ (x + H)

)
.

Then, for all λ ∈ [0, 1],

vol
(
(1− λ)K + λL

)
≥ (1− λ)kvol(K) + λkvol(L).

This result generalizes [7, Corollary 1.2.1] to all k ∈ {1, . . . , n}. The proof
is a direct consequence of Proposition 1.2 and the following lemma.

Lemma 3.1. Let k ∈ {1, . . . , n} and let H ∈ Ln
n−k. The following state-

ments are equivalent:
i) If K, L ∈ Kn satisfy that voln−k(K|H) = voln−k(L|H), then inequal-

ity (1.8) holds for all λ ∈ [0, 1].
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ii) If K, L ∈ Kn satisfy that

max
x∈H⊥

voln−k

(
K ∩ (x + H)

)
= max

x∈H⊥
voln−k

(
L ∩ (x + H)

)
,

then inequality (1.8) holds for all λ ∈ [0, 1].

Proof. First, we suppose i) and assume that

max
x∈H⊥

voln−k

(
K ∩ (x + H)

)
= max

x∈H⊥
voln−k

(
L ∩ (x + H)

)
= ν.

Then the orthogonal projections onto H of the Schwarz symmetrals of K
and L with respect to H⊥, namely, σH⊥K, σH⊥L, are equal; more precisely,(
σH⊥K

)
|H = (ν/κn−k)1/(n−k)Bn−k =

(
σH⊥L

)
|H. Thus i), together with

known properties of the Schwarz symmetrization (see [11, ch. IV]), yields to

vol
(
(1− λ)K + λL

)
= vol

(
σH⊥

(
(1− λ)K + λL

))
≥ vol

(
(1− λ)σH⊥K + λ σH⊥L

)
≥ (1− λ)kvol

(
σH⊥K

)
+ λkvol

(
σH⊥L

)
= (1− λ)kvol(K) + λkvol(L).

Conversely, we suppose ii) and assume that voln−k(K|H) = voln−k(L|H).
Then the Schwarz symmetrals σHK and σHL verify that

max
x∈H⊥

voln−k

(
(σHK) ∩ (x + H)

)
= voln−k

(
(σHK) ∩H

)
= voln−k(K|H)

= voln−k(L|H) = max
x∈H⊥

voln−k

(
(σHL) ∩ (x + H)

)
,

and therefore, ii), together with known properties of the Schwarz symmetri-
zation, yields to

vol
(
(1− λ)K + λL

)
= vol

(
σH

(
(1− λ)K + λL

))
≥ vol

(
(1− λ)σHK + λ σHL

)
≥ (1− λ)kvol(σHK) + λkvol(σHL)

= (1− λ)kvol(K) + λkvol(L). �

Next we prove Theorem 1.2, which generalizes both (1.2) and (1.3).

Proof of Theorem 1.2. Arguing in the same way as in the proof of Proposi-
tion 1.1, we get (1− λ)K(u) + λL(u) ⊂ Mλ(u) which, together with Brunn-
Minkowski inequality (1.2), yields

vol
(
(1− λ)K + λL

)1/k = vol(Mλ)1/k =
(∫

U
volk

(
Mλ(u)

)
du

)1/k

≥
(∫

U
volk

(
(1− λ)K(u) + λL(u)

)
du

)1/k

≥
(∫

U

[
(1− λ)volk

(
K(u)

)1/k + λvolk
(
L(u)

)1/k
]k

du

)1/k

.
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Then, applying Hölder’s inequality (see e.g. [8, Corollary 1.5]) to the func-
tions (1− λ)volk

(
K(u)

)1/k + λvolk
(
L(u)

)1/k and 1, we finally get

vol
(
(1− λ)K + λL

)1/k

≥
(∫

U

[
(1− λ)volk

(
K(u)

)1/k + λvolk
(
L(u)

)1/k
]k

du

)1/k

≥ 1
voln−k(U)1−1/k

∫
U

(
(1− λ)volk

(
K(u)

)1/k + λvolk
(
L(u)

)1/k
)

du

= (1− λ)
∫

U

(
volk(K(u))

voln−k(U)k−1

)1/k

du + λ

∫
U

(
volk(L(u))

voln−k(U)k−1

)1/k

du.�

Remark 3.2. Theorem 1.2 generalizes both, Brunn-Minkowski inequality
(1.2) and Theorem A. Indeed, if k = 1 then (1.10) becomes inequality (1.3);
for k = n, then U = {0} and hence, vol0(U) = 1 and the integrals in (1.10)
are just the volumes of K and L, respectively. Therefore, (1.10) gives (1.2).

We conclude this section by showing that, for a particular relative quer-
massintegral, the expected refinement can be obtained. In order to prove it,
we shortly need some notation on mixed volumes, i.e., the coefficients of the
most general (n-variables) polynomial which is obtained when the volume of
a linear combination λ1K1+· · ·+λmKm, Ki ∈ Kn and λi ≥ 0, i = 1, . . . ,m, is
computed. As usual, V(K1, . . . ,Kn) denotes the mixed volume of the convex
bodies K1, . . . ,Kn ∈ Kn, and for the sake of brevity we will use the abbrevia-
tion

(
K1[r1], . . . ,Km[rm]

)
≡
(
K1,

(r1). . . ,K1, . . . ,Km, (rm). . . ,Km

)
. In particular,

it holds Wi(K1;K2) = V
(
K1[n − i],K2[i]

)
. For a deep study of mixed vol-

umes we refer to [19, s. 5.1].

Proposition 3.2. Let k ∈ {1, . . . , n−1} and let K, L ∈ Kn be convex bodies
such that there exists H ∈ Ln

n−k with K|H = L|H. Then, for any convex
body Ek ( H⊥ and all λ ∈ [0, 1],
(3.1)
Wk−1

(
(1− λ)K + λL;Ek

)1/k ≥ (1− λ)Wk−1(K;Ek)1/k + λWk−1(L;Ek)1/k.

Proof. We observe that (3.1) holds for convex bodies K, L having a common
(n − k)-projection if and only if f(λ) = Wk−1

(
(1 − λ)K + λL;Ek

)1/k is
a concave function on [0, 1] (see the proof of Theorem 1.1). So we have
to see that f ′′(λ) ≤ 0, and following the argument of the proof of [19,
Theorem 6.4.3], it suffices to show this for λ = 0. It can be checked that
f ′′(0) ≤ 0 if and only if

(n−k)Wk−1(K;Ek)
[
Wk−1(K;Ek)− 2V

(
K[n− k], L,Ek[k − 1]

)
+ V

(
K[n− k − 1], L[2], Ek[k − 1]

)]
−
(

1− 1
k

)
(n− k +1)

[
V
(
K[n− k], L,Ek[k − 1]

)
−Wk−1(K;Ek)

]2
≤ 0.
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The second summand is clearly negative, and hence, we have to study the
sign of the first one.

On the one hand, denoting for short C =
(
K[n − k − 1], Ek[k − 1]

)
, it is

well-known that, in particular,

(3.2)
V(K[2], C)

V(K, M, C)2
− 2V(K, L, C)

V(K, M, C)V(L,M, C)
+

V(L[2], C)
V(L,M, C)2

≤ 0

for any convex body M ∈ Kn (see [19, Theorem 6.4.2]). On the other
hand, denoting by ϑ(j) the mixed volume computed in a j-dimensional affine
subspace, and since Ek ( H⊥, it holds (see [19, (5.3.23)])

Wk(K;Ek) =
1(
n
k

)volk(Ek)voln−k(K|H) and

V
(
K[n− k − 1], L,Ek[k]

)
= volk(Ek)V

(
K[n− k − 1], L,

Ek

volk(Ek)1/k
[k]
)

=
volk(Ek)(

n
k

) ϑ(n−k)
(
K|H[n− k − 1], L|H

)
,

and using the projection assumption K|H = L|H, we get

V
(
K[n− k − 1], L,Ek[k]

)
=

volk(Ek)(
n
k

) voln−k(K|H) = Wk(K;Ek),

i.e., V(L,Ek, C) = V(K, Ek, C). Then, (3.2) for M = Ek yields

Wk−1(K;Ek)−2V
(
K[n−k], L,Ek[k−1]

)
+V
(
K[n−k−1], L[2], Ek[k−1]

)
≤ 0,

which shows that f ′′(0) ≤ 0, as required. �

4. Brunn-Minkowski inequality for particular families of
convex bodies

A convex body K ∈ Kn containing the convex body E ∈ Kn is called a
p-tangential body of E, p ∈ {0, . . . , n − 1}, if each support plane of K not
supporting E contains only (p− 1)-singular points of K [19, p. 76]. Here a
boundary point x of K is said to be an r-singular point of K if the dimension
of the normal cone in x is at least n− r. For further characterizations and
properties of p-tangential bodies we refer to [19, s. 2.2].

So a 0-tangential body of E is just the body E itself and each p-tangential
body of E is also a q-tangential body for p < q ≤ n− 1.

A 1-tangential body is usually called cap-body, which can be seen as the
convex hull of E and countably many points such that the line segment
joining any pair of those points intersects E.

The following theorem provides a characterization of n-dimensional p-
tangential bodies in terms of the relative quermassintegrals.

Theorem 4.1 (Favard [4], [19, p. 367]). Let K, E ∈ Kn
0 , E ⊂ K, and let

p ∈ {0, . . . , n − 1}. Then W0(K;E) = W1(K;E) = · · · = Wn−p(K;E) if
and only if K is a p-tangential body of E.
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In this section we improve Brunn-Minkowski inequality for the family of
p-tangential bodies, i.e., we show Theorem 1.3, which is a direct consequence
of the following slightly more general result.

Theorem 4.2. Let K ∈ Kn, E ∈ Kn
0 and s ∈ {1, . . . , n} be such that

Ws(K;E) = Ws+1(K;E) = · · · = Wn(K;E). Then, for all λ ∈ [0, 1],

(4.1) vol
(
(1− λ)K + λE

)1/s ≥ (1− λ)vol(K)1/s + λvol(E)1/s

and equality holds if and only if K = E. Moreover,

Wi

(
(1− λ)K + λE;E

)1/(s−i) ≥ (1− λ)Wi(K;E)1/(s−i) + λWi(E;E)1/(s−i),

i = 0, . . . , s − 1, and equality holds for some fixed i, if and only if K, E
satisfy Wi(K;E) = · · · = Wn(K;E).

Indeed, if K is a p-tangential body of E ∈ Kn
0 , 1 ≤ p ≤ n − 1, then

Favard’s Theorem 4.1 ensures that

W0(K;E) = W1(K;E) = · · · = Wn−p(K;E) 6= 0,

and since Wj(K;E) = Wn−j(E;K), Theorem 4.2 immediately implies The-
orem 1.3.

Remark 4.1. The condition intE 6= ∅ cannot be removed, since it is needed
that vol(E) 6= 0. Indeed, taking K = [0, e1] + [0, e2] + [0, 2e3] ∈ K3 and
E = [0, e3], then W2(K;E) = W3(K;E) = 0. However, for every λ ∈ (0, 1),
it holds

vol
(
(1− λ)K + λL

)1/2 = (1− λ)(2− λ)1/2

< (1− λ)
√

2 = (1− λ)vol(K)1/2 + λvol(E)1/2.

Proof of Theorem 4.2. We will show the inequality (4.1) for the volume.
The relations for the quermassintegrals, as well the corresponding equality
cases, can be obtained analogously.

Using the well-known Aleksandrov-Fenchel inequality for quermassinte-
grals (see e.g. [19, s. 6.3]), namely,

(4.2) Wi(K;E)2 ≥ Wi−1(K;E)Wi+1(K;E), 1 ≤ i ≤ n− 1,

and since Ws(K;E) 6= 0, we easily get that

(4.3) W0(K;E) ≤ · · · ≤ Ws−1(K;E) ≤ Ws(K;E) = · · · = Wn(K;E).

Now we consider the polynomial function

f(λ) =
s∑

i=0

(
s

i

)
Wi(K;E)(1− λ)s−iλi,
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for λ ∈ [0, 1]. On the one hand, we can write

f(λ) =
[
(1− λ) + λ

]n−s
f(λ)

=

n−s∑
j=0

(
n− s

j

)
(1− λ)n−s−jλj

( s∑
i=0

(
s

i

)
Wi(K;E)(1− λ)s−iλi

)

=
n∑

k=0

 ∑
i+j=k

Wi(K;E)
(

s

i

)(
n− s

j

) (1− λ)n−kλk,

and using (4.3) we get that∑
i+j=k

Wi(K;E)
(

s

i

)(
n− s

j

)
≤ Wk(K;E)

∑
i+j=k

(
s

i

)(
n− s

j

)

= Wk(K;E)
(

n

k

)
.

Therefore,
(4.4)

f(λ)1/s ≤

(
n∑

k=0

(
n

k

)
Wk(K;E)(1− λ)n−kλk

)1/s

= vol
(
(1− λ)K + λE

)1/s
.

On the other hand, since the coefficients of the polynomial f(λ), namely,
Wi(K;E) for i = 0, . . . , s, are non-negative real numbers satisfying the
Aleksandrov-Fenchel inequalities (4.2), a result of Shephard (see [20], [9,
Lemma 2.1]) ensures that Wi(K;E) = W

(s)

i (Ks;Es) are the relative quer-
massintegrals in Rs of two convex bodies Ks, Es ∈ Ks, i = 0, . . . , s. Then,
using (4.4) and Brunn-Minkowski inequality (1.2) in Rs, we conclude that

vol
(
(1− λ)K + λE

)1/s ≥ f(λ)1/s = vols
(
(1− λ)Ks + λEs

)1/s

≥ (1− λ)vols(Ks)1/s + λvols(Es)1/s

= (1− λ)vol(K)1/s + λvol(E)1/s,

since vols(Ks) = W
(s)

0 (Ks;Es) = W0(K;E) and vols(Es) = W
(s)

s (Ks;Es) =
Ws(K;E) = Wn(K;E).

Clearly, if K = E then equality holds in (4.1). Conversely, if we have
equality in (4.1), then equality holds in (4.3) for all quermassintegrals, i.e.,
W0(K;E) = · · · = Wn(K;E). It implies that K = E. �

In order to conclude the paper, we make an observation regarding an-
other family of convex bodies for which a refinement of Brunn-Minkowski
inequality can be obtained, namely, V =

{
K ∈ Kn : vol(K) = v

}
, for a fixed

positive real number v ∈ R>0: if K, L ∈ V, then the multiplicative version
of Brunn-Minkowski inequality (see e.g. [8, Theorem 8.15]) leads to

vol
(
(1− λ)K + λL

)
≥ vol(K)1−λvol(L)λ = v = (1− λ)vol(K) + λvol(L).
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Thus, the following corollary has been proved.

Corollary 4.1. Let K, L ∈ Kn with vol(K) = vol(L). Then,

vol
(
(1− λ)K + λL

)
≥ (1− λ)vol(K) + λvol(L).

The above result can be also obtained as a consequence (for k = 0) of
a more general refinement of Brunn-Minkowski inequality of type (1.6) for
quermassintegrals.

Proposition 4.1. Let k ∈ {0, . . . , n−2} and let K, L ∈ Kn be convex bodies
such that for all H ∈ Ln

n−k, voln−k(K|H) = voln−k(L|H). Then,

(4.5) Wk

(
(1− λ)K + λL

)
≥ (1− λ)Wk(K) + λWk(L).

Proof. Kubota’s integral recursion formula (see e.g. [19, p. 295, (5.3.27)]
states, in particular, that, for any convex body K ∈ Kn,

Wk(K) =
κn

κn−k

∫
Ln

n−k

voln−k(K|H) dµ(H),

where µ is the (rotationally invariant) Haar measure on the set Ln
n−k such

that µ(Ln
n−k) = 1. Thus, since voln−k(K|H) = voln−k(L|H), we imme-

diately get that Wk(K) = Wk(L), and moreover, using Brunn-Minkowski
inequality in Rk we can conclude that∫
Ln

n−k

voln−k

((
(1− λ)K + λL

)∣∣H) dµ(H)

=
∫
Ln

n−k

voln−k

(
(1− λ)K|H + λL|H

)
dµ(H)

≥
∫
Ln

n−k

[
(1− λ)voln−k(K|H)1/(n−k)+λvoln−k(L|H)1/(n−k)

]n−k
dµ(H)

=
∫
Ln

n−k

voln−k(K|H) dµ(H).

Therefore,

Wk

(
(1− λ)K + λL

)
≥ Wk(K) = (1− λ)Wk(K) + λWk(L). �
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